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This is the fourth time the “Gang of Four” authors have 
asked me to write an introduction to their textbook. I 
was f attered, so again said yes. Now I know why they 
keep on doing this: I heard from a Wiley insider that 
market research shows that my stuff is the most read 
section of the book! And who can resist having his 
great thoughts read by 80,000 purchasers (so far) of 
the book? But next time I’ll charge the Gang. 

Looking at publisher’s blurb for the fourth edition, the 
f rst thing my eagle eyes picked up was the “science 
and systems” goof right there on the front cover—
rather than the other way round used previously. I know 
you won’t pulp the print run just because of this, but 
y’know the new title might just be a blessing in dis-
guise. If you Google “GIS,” I’ve noticed that references 
to my general infantrymen colleagues keep popping 
up on the list, so perhaps the term doesn’t denote 
the sunrise industry it once was. Today’s bright young 
wannabes (and old tight-f sted cheapskates like me) are 
more likely to patch together free and open software 
than toe the corporate software line. At the end of 
the day, I buy the line the Gang have spun since I f rst 
started helping them write, namely that science is more 
exciting than this month’s favorite software release.

Which brings me to my news. Those who have fol-
lowed my “most read” contributions will know that life 
in the GI “system garden” has not always been smooth 
for me. I’ve tried all sorts of roles, worked in many coun-
tries as a consultant, started businesses, smooched with 
governments, and got marooned on a desert island for 
my pains. Despite all my entrepreneurial activities, I’m 
still not rich. In fact, I’m broke. I’m living in a battered 
caravan in an alcohol-free Islamic country. Because I 
worked for the U.S. military for a time, where I am had 
better be secret ’til I raise enough cash to move on.

So I’ve been rethinking what’s gone wrong, 
despite my unrivalled experience and scientif c skills. 
Partly it’s the structure of our industry. I’ve noticed that 
almost all the job adverts are for relatively lowly paid 
technical roles, and there are not many highly paid 
employees that are data bashers. I want to be one of 
the top guys, not a technician—I’m too old to keep up 
with techie college graduates when the GIS world is 
changing so rapidly. If putting science before systems 
presents new market opportunities, count me in, guys.

But at the end of the day, science just isn’t where 
the real action is. When Calvin Coolidge was President, 
he said that “the business of America is business.” So 
I’ve retrained: I’ve used my GIS to acquire a three-month 
Masters in intellectual property law from a respected 
online learning provider—my life-experience credits put 

me on the fast track from the start, and they accepted 
my successful patent f ling for the Lobley Precisional 
Adjustment to differential GPS instead of a dissertation. 
The only problem was the huge fee I had to pay an 
agent to get certif ed as having passed everything. There 
have been so many big legal cases of late between 
Apple, Samsung, Google, and the rest over infringement 
of patents that I must be able to make it big in the “law 
and GIS” domain. If I had done it a bit earlier I could 
have sued one of the street data providers on behalf 
of users of their error-prone mapping. All I would have 
needed is for the families of a few people drowned after 
driving into a river by following these maps to ask me to 
act for them. OK, timing is everything.

I can only see one problem with GIS and law. It 
comes, as you might guess, from government. In the 
United States, government—apart from the military—
mostly and until recently hasn’t seen data as an asset 
to be treasured, protected, and exploited (I could help 
them). Worse, this plague is spreading. Can you believe 
that 60 or so national governments—including some 
serious ones (but not yet China or India, and Russia 
changed its mind)—have signed up to something 
called the Open Government Partnership? The idea is 
to f agellate themselves by making public commitments 
to reform government, foster innovation, and make 
everything transparent. Making almost all government 
data free seems to be the way that they will enable 
armchair auditors to keep watch on their government 
and politicians. This madness could be a serious barrier 
to my wealth creation if everything everywhere is free. 
But hey, maybe I could become a super-auditor, identi-
fying fraud through use of GIS to bring data together. It 
would need to include lots of personal data, but privacy 
is an outdated concept anyway. My ex-wife Lolita found 
that out when I tracked her philandering throughout 
Lincolnshire some years ago.

All this, of course, is about Big Data—another 
fashion. We GIS folk have been doing it for years 
but no one has listened to us. As is normal with new 
fashions, big consultancies have proclaimed they are 
experts in it and can change the world. I could try giv-
ing them the benef t of my experience. But my best 
hope is to work for the U.S. National Security Agency 
or another country’s version of it. Those guys—as 
Snowden pointed out—are focused, with clear aims, 
limited accountability, and lots of money. My kind of 
folk in fact. The bad guys have to live somewhere so 
the good guys need GIS. . . .

Joe Lobley

FOREWORD

x Foreword

Joe Lobley here, again.
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We dedicate this fourth edition to Roger Tomlinson (1933–2014). Often 
called the “Father of GIS,” Roger devoted most of his adult life to promot-

ing the systems, technology, and science of geographic information (GI), as an 
integral part of the discipline of geography. In the 1960s he was the prime insti-
gator behind the Canada Geographic Information System, a federal–provincial 
project to automate the measurement of Canada’s land resource. In the 1970s 
he argued forcefully for a single, integrated technology for handling geographic 
information, completed a PhD at University College London, organized ground-
breaking conferences through the aegis of the International Geographical Union, 
and founded a consulting practice to advise government agencies on the adop-
tion of GI systems. His approach is ably detailed in his book, Thinking about GIS: 
Geographic Information System Planning for Managers (Esri Press), which is now 
in its f fth edition, and in the executive seminars he has led at the Esri International 
User Conference for many years.

Roger was an unf agging promoter of GI systems, which he saw as an essen-
tial part of humanity’s interaction with its environment and the key to the solution 
of many of humanity’s problems. He will be remembered for the force of his 
personality, his wit and charm, and his passionate support of the f eld, which he 
did more than perhaps anyone else to establish and support.

Dedication

DEDICATION



PREFACE
It is an old but true adage that everything that hap-

pens, happens somewhere. Throughout the history 
of humankind, geography has played a central role in 
many types of decision-making, some of which have 
life or death, or at least major strategic, impacts.  In 
the past 50 years decision-making has benef ted 
enormously, and in very many ways, from access to 
geographic information (GI), the science that under-
pins it, and the systems technology that enables it.

The previous edition of this textbook was pub-
lished in 2011. Since then our world has changed, 
in some respects dramatically. Many of our interac-
tions with information now occur through mobile 
devices rather than desktops, laptops, or paper. 
Location- (i.e., geographic-) based services have 
been estimated to be worth between $150bn and 
$270bn annually. Open Data, Open Software, and 
Open Science have been developing rapidly. The 
emergence of Big Data—where our community has 
pioneered many developments—has been hailed 
by some as obviating many past constraints (such as 
ensuring that samples are representative of a known 
population). Virtually all data are now collected in 
digital form rather than on paper; it is claimed that 
more data are now collected every two years than in 
the whole of previous human history. Crowdsourcing 
has produced many new datasets and changes in the 
way we tackle some tasks—such as scanning satel-
lite images of a huge area of the South Indian Ocean 
for wreckage from Malaysian Airlines MH370 f ight, a 
project organized by DigitalGlobe using imagery from 
its Worldview-2 system.  Many governments are at 
last disgorging the information they hold for general 
use. And social media data are providing the fuel for 
real-time analysis of the geotemporal activity patterns 
of hundreds of millions of citizens. Given all that, this 
edition attempts to identify, explain, and evaluate the 
key changes and portray a snapshot of the contempo-
rary world of geographic information, GI science, and 
GI systems. 

In times past we wrote about geographic infor-
mation systems, or GIS. The world has moved on. 
Except where we are quoting from others, we no 
longer use the abbreviation GIS. GI systems continue 
to evolve rapidly in their functions, ease of use, and 
number and spread of their users. They continue to 
provide the tools to describe and analyze the physical 
or human environments, bringing together data and 
converting them into information and even evidence 
(see Section 1.2). But underpinning that use of daz-
zling new technologies is a rapidly developing GI 

science. Here we deal with principles, many of which 
have endured in changing guises ever since the f rst 
edition of this book appeared in 2001.  Where they 
exist, we deal with laws akin to those in the physical 
sciences, but also address the statistical generaliza-
tions of the social and environmental sciences. The 
third driving force of our Gang of Four is geographic 
information itself: we need to know its many charac-
teristics, including quality, if we are to accommodate 
the inevitable uncertainty that arises when we admix 
different data using a variety of algorithms.

The New Vision
Ref ecting this emerging GI ecosystem, we have 
made a subtle change of title in this, the fourth edi-
tion. The internal structure and content of the book 
ref ects the change.  After an introductory chapter, 
we develop a section on principles. This encom-
passes the nature of geographic data and informa-
tion, representing geography, georeferencing, and 
uncertainty. We follow this with the “how”—a section 
on techniques, dealing with GI system software, data 
modeling, data collection, creating and maintaining 
geographic databases, and the Geoweb. The fourth 
section on analysis covers cartography, geovisualiza-
tion, spatial data analysis, inferential spatial analysis, 
and spatial modeling.  The f fth section covers human 
factors in relation to what we now term geographic 
information science and systems (GISS). It deals with 
information and decision-making, and with navigat-
ing the legal, ethical, and many other risks that GISS 
practitioners face. The concluding chapter—the 
Epilog—looks ahead. But it does this not by seeking 
to assess technological change, important as that is. 
Rather, it seeks to identify where we can use our GISS 
understanding, knowledge, skills, and tools to tackle 
major problems. 

Throughout the book we emphasize the com-
monalities and the differences between groups of 
GI system users. Thus those in business, in govern-
ments at a variety of levels, in academia, and in not-
for-prof t organizations have overlapping concerns 
but some different drivers. This extends to differences 
between national and subnational cultures (and even 
between individuals), where our value systems and 
preferred modes of operating vary greatly. We have 
tried to give due credence to these similarities and 
differences.

Throughout the book we use examples and 
descriptions of luminaries whom we judge to have 
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made a substantial contribution. We have tried 
throughout the text to provide detail because “the 
devil is in the detail” while also trying to highlight 
key points (such as through use of short tweet-like 
“factoids” that appear in bold), further reading, and 
a set of questions at the end of each chapter to test 
how much the student has gained from it and whether 
the student can develop new ideas or practice.

Online Supplementary Materials
This fourth edition is available both in print and 
online. In addition to the full content of the print edi-
tion, the online Web site includes signif cant supple-
mentary material:
● A detailed discussion of four examples of GI 

system application, chosen to illustrate both the 
breadth of applications of GI technology, and the 
importance of the scientif c principles elaborated 
throughout the book.

● Powerpoint slides for each of the chapters of 
the book, designed to be used as the basis for a 
course of lectures on the book’s contents.

● An Instructor’s Manual, giving pointers to the most 
effective ways to use the book in courses.

The Best of Times
In short, we are in the most exciting of times.  Human 
ingenuity is transforming the way we can describe, 
analyze, and communicate what is occurring on 
the face of the Earth (and beyond). We have good 
enough science, information, and tools to make a real 
impact in improving societies, business performance, 
and much else—at all levels from the very local to the 
global. Central to all this is geographic variation and 
the awareness and skills to cope with it or even to 
reshape it. We authors are excited by what GISS prac-
titioners have already achieved and by the prospects 

for the future.  This book seeks to tell you why and 
convince you to join us.
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This chapter sets the conceptual framework 
for and summarizes the content of the 

book by addressing several major questions:

● What exactly is geographic information 
(GI), and why is it important? What is 
special about it?

● What new technological developments are 
changing the world of GI?

● How do GI systems affect the lives of 
average citizens?

● What kinds of decisions make use of 
geographic information?

● What is a geographic information system (GI 
system), and how would you recognize one?

● What is geographic information science 
(GI science), and why is it important to 
GI systems?

● How do scientists and governments use 
GI systems, and why do they f nd them 
helpful?

● How do companies make money from 
GI systems?

After studying this chapter you will:
●  Know defi nitions of many of the terms used 

throughout the book.
●  Be familiar with a brief history of GI science and 

GI systems.
●  Recognize the sometimes invisible roles of GI 

systems in everyday life, business, and government.
●  Understand the signifi cance of GI science and 

how it relates to GI systems.
●  Understand the many impacts that GI systems and 

its underpinning science are having on society and 
the need to study those impacts.

Geographic Information: 
Science, Systems, and 
Society

1

L E A R N I N G  O B J E C T I V E S

1.1  Introduction: What Are GI 
Science and Systems, and 
Why Do They Matter?

Almost everything that happens, happens somewhere. 
We humans conf ne our activities largely to the 
surface and near-surface of the Earth. We travel over 
it and through the lower levels of its atmosphere, and 
we go through tunnels dug just below the surface. We 
dig ditches and bury pipelines and cables, construct 
mines to get at mineral deposits, and drill wells 
to access oil and gas. We reside on the Earth and 
interact with others through work, leisure, and family 

pursuits. Keeping track of all this activity is important, 
and knowing where it occurs can be the most conve-
nient basis for tracking. Knowing where something 
happens is of critical importance if we want to go 
there ourselves or send someone there, to f nd more 
information about the same place, or to inform peo-
ple who live nearby. In addition, geography shapes 
the range of options that we have to address things 
that happen, and once they are made, decisions have 
geographic consequences. For example, deciding the 
route of a new high-speed railroad may be shaped by 
topographic and environmental considerations, and 
the chosen route will create geographic winners 
and losers in terms of access. Therefore geographic 



2 Introduction

1.1.1 The Importance of Location
Because location is so important, it is an issue in many 
of the problems society must solve. Some of these 
problems are so routine that we almost fail to notice 
them—the daily question of which route to take to 
and from work, for example. Others are quite extraor-
dinary and require rapid, concerted, and coordinated 
responses by a wide range of individuals and 
organizations—such as responding to the major 
emergencies created by hurricanes or earthquakes 
(see Box 1.1). Virtually all aspects of human life 
involve location. Environmental and social scientists 
recognize the importance of recording location when 
collecting data; major information companies such 
as Google recognize the importance of provid-
ing mapping and driving directions and prioritizing 
searches based on the user’s location; and citizens are 
increasingly familiar with services that map the current 
positions of their friends. Here are some examples 
of major decisions that have a strong geographic 
element and require GI:

● Health-care managers decide where to locate new 
clinics and hospitals.

● Online shopping companies decide the routes and 
schedules of their vehicles, often on a daily basis.

● Transportation authorities select routes for new 
highways and anticipate their impacts.

● Retailers assess the performance of their outlets 
and recommend how to expand or rationalize 
store networks.

● Forestry companies determine how best to man-
age forests, where to cut trees, where to locate 
roads, and where to plant new trees.

● National park authorities schedule recreational 
path creation, maintenance, and improvement 
(Figure 1.1).

● Governments decide how to allocate funds for 
building sea defenses.

● Travelers and tourists give and receive driving 
directions, select hotels in unfamiliar cities, and 
f nd their way around theme parks (Figure 1.2).

● Farmers employ new GI technology to make better 
decisions about the amounts of fertilizer and pesti-
cides to apply to different parts of their f elds.

If location and GI are important to the solution of so 
many problems, what distinguishes those problems 
from each other? Here are three bases for classify-
ing problems. First, there is the question of scale, or 
level of geographic detail. The architectural design 
of a building involves GI, but only at a very detailed 
or local scale. The information needed to service 
the building is also local—the size and shape of the 

location is an important component of activities, 
policies, strategies, and plans.

Almost everything that happens, happens 
somewhere. Knowing where something 
happens can be critically important.

The focus of this book is on geographic informa-
tion, that is, information that records where as well 
as what and perhaps also when. We use the abbre-
viation GI throughout the book. GI systems were 
originally conceived as something separate from the 
world they represent—a special kind of information 
system, often located on a user’s desk, dedicated 
to performing special kinds of operations related 
to location. But today such information pervades 
the Internet, can be accessed by our smartphones 
and other personal devices, and is fundamental to 
the services provided by governments, corpora-
tions, and even individuals. Locations are routinely 
attached to health records, to Twitter feeds and 
photographs uploaded to Flickr, and to the move-
ments of mobile phone users and vehicles. In a 
sense, then, the whole digital world has become one 
vast, interconnected GI system. This book builds on 
what users of this system already know—that use 
of GI services is integral to many of our interactions 
through the Internet. Later chapters will describe, 
for example, how storage and management of more 
and more data entail use of the Cloud, how Big Data 
and Open Data have become ubiquitous (but not 
necessarily useful), and how Web-based GI systems 
have become a fact of life.

Underlying these changes are certain fundamen-
tals, however, and these have a way of persisting 
despite advances in technology. We describe them 
with the term GI science, which we def ne as the 
general knowledge and important discoveries that 
have made GI systems possible. GI science provides 
the structure for this book because as educators 
we believe that knowledge of principles and 
fundamentals—knowledge that will still be valid 
many years from now—is more important than knowl-
edge of the technical details of today’s versions of GI 
technology. We use the acronym GISS—geographic 
information science and systems—at various points 
in this book to acknowledge the interdependence 
between the underpinning science and the technology 
of problem solving. 

At the outset, we also observe that GI science is 
also fundamentally concerned with solving applied 
problems in a world where business practices, or the 
realpolitik of government decision making, are impor-
tant considerations. We also discuss the practices of 
science and social science that, although governed by 
clearly def ned scientif c principles, are imperfectly cou-
pled in some fast-developing areas of citizen science.
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often argued that there is no longer any effective 
distinction between their methods. Many of the tools 
and methods used by a retail analyst seeking a site for 
a new store are essentially the same as those used by 
a scientist in a government agency to ensure the pro-
tection of an endangered species, or a transport plan-
ner trying to ameliorate peak-hour traff c congestion 
in a city. Each requires the most accurate measure-
ment devices, employs terms whose meanings have 
been widely shared and agreed on, produces results 
that are replicable by others, and in general follows 
all the principles of science that have evolved over 
the past centuries. The knowledge-exchange activi-
ties carried out between research organizations and 
the government and business sectors can be used to 
apply many of the results of curiosity-driven science 
to the practical world of problem solving.

The use of GI systems in support of science, rou-
tine application, and knowledge exchange reinforces 
the idea that science and practical problem solving 
are no longer distinct in their methods, as we will 
discuss later. As a consequence, GI systems are used 
widely in all kinds of organizations, from academic 
institutions to government agencies, not-for-prof t 
organizations, and corporations. The use of similar 
tools and methods across so much of science and 
problem solving is part of a shift from the pursuit of 
curiosity within traditional academic disciplines to 
solution-centered, interdisciplinary teamwork.

Nevertheless, in this book we distinguish between 
uses of GI systems that focus on applications such 
as inventory or resource management, or so-called 
normative uses, and uses that advance science, or 
so-called positive uses (a rather confusing meaning 
of that term, unfortunately, but the one commonly 
used by philosophers of science—its use implies that 
science conf rms theories by f nding positive evidence 
in support of them and rejects theories when negative 

parcel, the vertical and subterranean extent of the 
building, the slope of the land, and its accessibility 
using normal and emergency infrastructure. At the 
other end of the scale range, the global diffusion of 
epidemics and the propagation of tsunamis across 
the Pacif c Ocean (Box 1.1) are phenomena at a much 
broader and coarser scale.

Scale or level of geographic detail is an 
essential property of any project.

Second, problems can be distinguished on the basis of 
intent, or purpose. Some problems are strictly practi-
cal in nature—they must often be solved as quickly as 
possible and at minimum cost to achieve such practical 
objectives as saving lives in an emergency, 
avoiding f nes by regulators, or responding to civil 
disorder. Others are better characterized as driven by 
human curiosity. When GI is used to verify the theory 
of continental drift, to map distributions of glacial 
deposits, or to analyze the historic movements of 
people in anthropological or biosocial research (see 
Box 1.2 and Figure 1.5), there is no sense of an 
immediate problem that needs to be solved. Rather, the 
intent is to advance human understanding of the world, 
which we often recognize as the intent of science.

Although science and practical problem solving 
can be thought of as distinct human activities, it is 

Figure 1.2 Navigating tourist destinations is a geographic problem.

Figure 1.1 Maintaining and improving footpaths in national parks is 
a geographic problem.
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At 14.46 local time (05.56 GMT) on March 11, 2011, 
an undersea earthquake measuring 9.0 on the Richter 
scale occurred approximately 43 miles (70 kilometers) 
east of the Japanese coast of Tōhoku. This was the most 
powerful earthquake ever to have been scientifi cally 
documented in Japan, and the fi fth most powerful 
earthquake in the world since modern record-keeping 
began in c. 1900. The earthquake moved Honshu (the 
main island of Japan) 2.4 m (8 ft) east and shifted the 
Earth on its axis by estimates of between 10 cm (4 in) 
and 25 cm (10 in). Of more immediate signifi cance, the 
earthquake caused severe earth tremors on the main 
islands of Japan and triggered powerful tsunami waves 
that reached heights of up to 40.5 meters (133 ft) in 
Tōhoku Prefecture and traveled up to 10 km (6 mi) 
inland in Sendai.

Directly or indirectly, the earthquake led to at least 
15,883 deaths and the partial or total collapse of over 

380,000 buildings. It also caused extensive and severe 
structural damage in northeastern Japan (Figure 1.3B), 
including heavy damage to roads and railways, as well as 
fi res in many areas and a dam collapse. In its immediate 
aftermath, 4.4 million households in northeastern Japan 
were left without electricity and 1.5 million without 
water. In the following days, the tsunami set in action 
events that led to cooling system failures, explosions, 
and major meltdowns at three reactors of the Fukushima 
Daiichi Nuclear Power Plant and the associated evacua-
tion of hundreds of thousands of residents. The World 
Bank estimated the economic cost at US$235 billion, 
making it the costliest natural disaster in world history.

All of this happened to a very advanced economy in 
an earthquake-prone region, which was almost certainly 
the best prepared in the world for a natural disaster 
of this kind. GI systems had been used to assemble 
information on a full range of spatially distributed 

The 2011 Tōhoku Earthquake and Tsunami

Applications Box  1.1

Figure 1.3 (A) The passage of the tsunami arising out of the Great East Japan (Tōhoku) earthquake of March 11, 2011. It had subsequent 
effects on Soma City in terms of (B) radiation (measured in mSv/h (micro Sievert per hour) and (C) tsunami inundation. ▲
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terms from the dynastic (perhaps thousands of years; 
see Box 1.2) to the diurnal, but very much longer 
with respect to understanding geological or geomor-
phological change. At one end of the human time 
spectrum, some decisions are operational and are 
required for the smooth day-to-day functioning of an 
organization, such as how to control electricity inputs 
into grids that experience daily surges and troughs in 
usage. At slightly longer timescales, tactical decisions 
might include where to cut trees in next year’s forest 
harvesting plan. Still other decisions are more infre-
quent and strategic in nature, such as those required 
to give an organization long-term direction, as when 
a retailer decides to expand or rationalize its store 
network (Figure 1.4). At the far end of the human time 
spectrum, Box 1.2 describes how the geographic 

evidence is found). Finding new locations for retailers, 
with its focus on design, is an example of a normative 
application of GI systems. But to predict how consum-
ers will respond to new locations, it is necessary for 
retailers to analyze and model the actual patterns of 
behavior they exhibit. Therefore, the models they use 
will be grounded in observations of messy reality that 
have been tested in a positive manner.

Design is concerned with improving the world—
with decisions that when implemented achieve certain 
desired objectives, such as constructing new housing 
subdivisions, developing conservation plans, or def n-
ing sales territories. In recent years the term geodesign 
has become a popular way of referring to design deci-
sions at geographic scales, supported by GI systems. 
All of us would like to design improvements to the 
world, and GI systems are valuable tools for doing so. 
Although most work with GI systems is considerably 
more mundane, it is always good to bear its grander 
potential in mind. As we show in Section 14.4, 
geodesign combines two important functions of GI 
systems—the ability to capture new ideas through 
sketching (creating/editing new features) and the 
ability to evaluate them and assess their impacts. A 
user might sketch a design for a new development, 
for example, and ask the GI system to predict its 
impacts on transportation, groundwater, and air 
pollution.

With a single collection of tools, GI systems 
are able to bridge the gap between curiosity-
driven science and practical problem solving

The third way in which problems can be distinguished 
is on the basis of their time scale, ranging in human 

phenomena—including the human population, the built 
environment, and transportation infrastructure—in 
preparation for a major earthquake disaster and protec-
tion against many of its foreseeable consequences. 

Yet the science of predicting the location, timing, 
and intensity of earthquakes has made little progress 
over the past century. A magnitude-9.0 earthquake is a 
very rare event and so did not fall within any disaster-
management scenario prior to the event. For example, 
the Fukushima reactors had been built to withstand a 
magnitude-8.6 earthquake on the basis of historic occur-
rences plus a safety margin: but not an event of magni-
tude 9.0. However, even when major events are unfore-
seen, GI science and systems are integral to response and 
recovery in the short term (e.g., alerting populations to 
the imminent arrival of a tsunami, coordinating citizen 

reports of how localities have been affected, and orga-
nizing evacuation), the medium term (e.g., managing 
the disruption to industrial supply chains), and the 
long term (e.g., prioritizing repair and replacement of 
damaged transport infrastructure). All these actions 
take place in an organizational context. Early warn-
ing systems are very much an international effort. In 
terms of addressing effects after the event, the Tōhoku 
earthquake raised issues that were best addressed at 
the national level, whereas much of the implementation 
was best effected at local levels.

The three Ps of disaster management are 
prevention, preparedness, and protection. 
GI science and systems are integral to each 
of them.

▲

Figure 1.4 Many store location principles are generic across different 
retail markets, as with Tesco’s investment in Ostrava, Czech Republic.



6 Introduction

As individuals, many of us are interested in where, in 
general terms, we came from at different points in 
recorded human history—for example, whether we 
are of Irish, Spanish, or Italian descent. More specifi c 
locational information can provide clues about the work 
and other lifestyle characteristics of our ancestors. Some 
of the best clues to our ancestry may come from our 
surnames (family names) because many surnames 
indicate geographic origins to greater or lesser degrees 
of precision (such clues are less important in some 
Eastern societies, where family histories are gener-
ally much better documented). Research at University 
College London uses GI systems to analyze historic and 
present-day lists of names to investigate the changing 
local and regional geographies of surnames across the 
world. Figure 1.5 illustrates how the bearers of four 
selected Anglo-Saxon names in Great Britain (the ances-
tors of the authors of this book) have mostly stayed 
put in those parts of the island where the names fi rst 
came into common parlance at some point between the 
12th and 14th centuries—although some have evidently 
migrated to urban centers.

It also turns out that the mix of names with similar 
geographic origins in any given area can provide a good 
indication of regional identity. Figure 1.6, derived from 
the PhD thesis of Jens Kandt, presents a regionaliza-
tion of Great Britain on the basis of the present-day 

residences of bearers of different surnames. (This is 
essentially a geography of rural Britain. Note that the 
major urban areas have been excluded because they are 
characterized by mixes of names arising from urban–
rural, interregional, and international migration over 
the last 200 or so years). 

All of this is most obviously evident for Great 
Britain and many of the countries of Europe, where 
populations have remained settled close to the loca-
tions at which their names were fi rst coined. But there 
is also evidence to suggest that the spatial patterning 
of names in former colonies, such as North America, 
Australia, and New Zealand, is far from random. 
Figure 1.7 illustrates this for the surname Singleton, 
which can be used to build evidence about the migra-
tion patterns of bearers of this name from their docu-
mented origins in northwest England. 

Fundamentally, this is curiosity-driven research, driven 
by the desire among amateur genealogists to discover 
their roots. But the same techniques can be used to repre-
sent the nature and depth of affi liation that people feel 
toward the places in which they live. Moreover, the work 
of Sir Walter Bodmer and colleagues (Box 1.4) is high-
lighting probable links between surnames and genetics, 
rendering this curiosity-driven research relevant to the 
development of drug and lifestyle interventions. 

Researching Family Histories and Geo-Genealogy

Applications Box  1.2

▲

Applications are discussed to illustrate particular 
principles, techniques, analytic methods, and man-
agement practices (such as risk minimization) as these 
arise throughout the book.

1.1.2 Spatial Is Special
The adjective geographic refers to the Earth’s 
surface and near surface, at scales from the 
architectural to the global. This def nes the subject 
matter of this book, but other terms have simi-
lar meaning. Spatial refers to any space, not only 
the space of the Earth’s surface; this term is used 
frequently in the book, almost always with the same 
meaning as geographic. But many of the methods 
used in GI systems are also applicable to other non-
geographic spaces, including the surfaces of other 
planets, the space of the cosmos, and the space 
of the human body that is captured by medical 
images. Techniques that are integral to GI systems 
have even been applied to the analysis of genome 
sequences on DNA. So the discussion of analysis 

distributions of family names, past and present, can 
be used to indicate how settled (or otherwise) is the 
population of different places, and even the geogra-
phy of the DNA of long-settled residents consequent 
on population movements in early human history 
(see Box 1.4).

Although humans like to classify time frames 
into hours, days, years, centuries, and epochs, the 
real world is somewhat more complex than this, and 
these distinctions may blur—what is theoretically and 
statistically a 1000-year f ood in a river system inf u-
ences strategic and tactical considerations, but may 
arrive a year after the previous one! Other problems 
that interest geophysicists, geologists, or evolution-
ary biologists may occur on timescales that are much 
longer than a human lifetime, but are still geographic 
in nature, such as predictions about the future physi-
cal environment of Japan or about the animal popula-
tions of Africa. GI databases are often transactional 
(see Section 9.9.1), meaning that they are constantly 
being updated as new information arrives, unlike 
paper maps, which stay the same once printed. 
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▲

▲

Figure 1.5 The Great Britain Geography of the Longleys, Goodchilds, Maguires, and Rhinds. In each case the shorter (blue) line delineates the 
smallest possible area within which 95% of name bearers reside, based on 1881 Census of Population fi gures, and the outer (red) line encloses 
the smallest area that accommodates the same proportion of adult name bearers according to a recent address register.
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8 Introduction

▲

Figure 1.7 The Singleton family 
name derives from a place in north-
west England, and understandably 
the greatest concentration of this 
name today still occurs in this region. 
But why should the name be dis-
proportionately concentrated in the 
south and west of the United States? 
Geographical analysis of the global 
pattern of family names can help 
us to hypothesize about the historic 
migrations of families, communities, 
and cultural groups. 

Figure 1.6 A regionalization based on the coinci-
dence of distinctive patterns of surnames, showing 
the southern part of Great Britain. Major urban 
areas do not fi t into this regional pattern because 
their residents are drawn from a wide range of 
national and international origins.
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become clear in later chapters and are brief y 
summarized in Box 1.3.

1.2  Data, Information, Evidence, 
Knowledge, and Wisdom

Information systems help us to manage what we 
know, by making it easy to organize and store, 
access and retrieve, manipulate and synthesize, and 
apply to the solution of problems. We use a vari-
ety of terms to describe what we know, including 
the f ve that head this section and that are shown 
in Table 1.1. There are no universally agreed-on 
def nitions of these terms. Nevertheless it is worth 
trying to come to grips with their various meanings 
because the differences between them can often be 
signif cant, and what follows draws on many sources 
and thus provides the basis for the use of these 
terms throughout the book. Data clearly refers to 
the most mundane kind of information and wisdom 
to the most substantive. Data consist of numbers, 
text, or symbols, which are in some sense neutral 
and almost context-free. Raw geographic facts, such 
as sensor measurements of temperature at a specif c 
time and location, are examples of data. When data 
are transmitted, they are treated as a stream of bits; 
a crucial requirement is to preserve the integrity of 
the data set. The internal meaning of the data is 
irrelevant in such considerations. Data (the noun is 
the plural of datum) are assembled together in a 

in this book is of spatial analysis (see Chapters 13 
and 14), not geographic analysis, to emphasize this 
versatility.

Another term that has been growing in usage 
in recent years is geospatial—implying a subset 
of spatial applied specif cally to the Earth’s surface 
and near surface. In this book we have tended 
to avoid geospatial, preferring geographic, and 
we use spatial where we need to emphasize 
generality.

Although there are subtle distinctions 
between the terms geographic(al), spatial, 
and geospatial, for many practical purposes 
they can be used interchangeably.

People who encounter GI for the f rst time 
are sometimes driven to ask why geography is so 
important; why, they ask, is spatial special? After 
all, there is plenty of information around about 
geriatrics, for example, and in principle one could 
create a geriatric information system. So why has GI 
spawned an entire industry, if geriatric information 
has not done so to anything like the same extent? 
Why are there unlikely to be courses in universi-
ties specif cally in geriatric information science and 
systems? Part of the answer should be clear already: 
almost all human activities and decisions involve a 
location component, and the location component is 
important. Another reason will become apparent in 
Chapter 2, where we will see that working with GI 
involves complex and diff cult choices that are also 
largely unique. Other, more technical reasons will 

Some Technical Reasons Why Geographic Information Is Special and Why GI Science 
and Systems Have Developed

Technical Box  1.3

●  It is multidimensional, because two coordinates must 
be specifi ed to defi ne a location, whether they be x 
and y or latitude and longitude; and a third coordi-
nate is needed when elevation is important. 

●  It is voluminous because a geographic database can 
easily reach a terabyte in size (see Table 1.2).

●  It may be collected by citizens, governments, or other 
organizations, and it may prove useful to pool infor-
mation from these diverse sources.

●  It may be represented at different levels of spatial 
resolution, for example, by using a representation 

equivalent to a 1:1 million-scale map or a 
1:24,000-scale one (see Section 3.7).

●  It may be represented in different ways inside a com-
puter (see Chapter 3), and how this is done can strongly 
infl uence the ease of analysis and the end results.

●  It must often be projected onto a fl at surface, for 
reasons identifi ed in Section 4.8.

●  It requires many special methods for its analysis (see 
Chapters 13 and 14).

●  It may be transformed to present different views of 
the world, for example, to aid interpretation.


